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Abstract:The adsorption of anionic collectors (xanthate) on the surface of galena was studied 
using diffuse reflectance FTIR (DRIFT) and scanning electron micrograph (SEM) techniques.   
The effect of sulphite interaction with galena on the mechanism of potassium amyl xanthate 
(KAX)  adsorption onto galena surfaces has been studied in situ using electrochemical poten-
tial,  FTIR spectra and SEM have been used to identify the mechanism of interaction between 
sulphite and galena surfaces. 
Activated galena with copper sulfate (10-4M) has been investigated at pH 9.5 and potassium 
amyl xanthate  (3.10-2M) concentration. 
Potential (Eopt (PbS) = +55mV); Adsorbed colloidal (Pb-AX, 1109-1384Cm-1) is found even at 
high xanthate concentration, colloidal lead oxide/hydroxide particles have been imaged after 
10-4M lead sulfate addition at    pH 9.5. 
The behaviour of this system is consistent with ion exchange between xanthate and hydroxide 
followed by    oxidation to dixanthogen (X2, 1276Cm-1) and diffusion of this species across 
the surface. 
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Introduction  
Separation of minerals from ores is a very important industrial process. The commonly applied separation    
method is flotation, which ensures the required relation between the hydrophobic and hydrophilic properties on 
the surface of the mineral particles. 
Much of the research was focused on the action of hydrophobic xanthate type surfactants on sulphide minerals. 
Different possibilities have been suggested in literature to explain how xanthates can render hydrophobic the 
surface of minerals G.W. Poling et al. (1963), M.C. Fuerstenau et al. (1982), J. Leppinen et al. (1995), N.P 
Finkelstain et al. (1997), and E. Mielezarski et al (2003). 
A distinct progress in identifying the structure of the surface products formed on the mineral surface after the 
sorption of the collector has been achieved with the aid of the spectroscopic methods, especially infrared (IR) 
spectroscopy correlated with scanning electron micrograph (SEM).Z. Nedjar et al. (2009). 
The most commonly used thiol collectors are xanthates, which are alkali metal (e.g. Na+,K+) salts of mono alkyl 
esters of dithiocarbonic acid(e.g. Potassium amyl xanthate : C5H11OCS2K). They are used as flotation agents in 
the recovery of metal sulphids (e.g. MeS: PbS galena). P.J. Harris et al. (1988). 
The efficiency of xanthates as mineral collectors increases with the length of the carbon chain but results in a 
decrease in the selective flotation of minerals. 
The activating effect of sodium sulphide is strongly time dependent. An increase in sulphidisation leads to an 
increase in the hydrophobicity of the mineral surface. Excess of copper sulfate acts as a depressant for oxidized 
lead and metal minerals because the adsorption of divalent sulphide ion on the surface of lead oxide minerals 
increases the negative charge which prevents the adsorption of collector. SEM and FTIR have been found to be 
useful techniques for elucidating the surface properties of solids, which may berelevant in applied aspects of 
mineral processing G.Ozbayoglu et al (1994). 
In the present investigation, the adsorption behavior effects of various amounts of anionic collectors on pure 
galena surfaces was verified using diffuse reflectance FT-IR,SEM and electrochemical potential studies.   



 

Experimental

Materials and reagents 
The galena sample was obtained from the Cheabet Elhamra mine, Algeria. The elemental composition 

of galena, see [Table 1]. 
 

Table 1.Chemical analysis of galena from Cheabet Elhamra mine 
 

 
Mineral 

Chemical elements present (wt. %) 

Pb S Fe Cu 
Galena 83.32 9.97 2.39 0.74 

 
The galena sample was crushed and the selected grains ground in an agate mortar. The galena fraction 

of -208+108μm was used in adsorption tests. The final grinding product (- 208 +108μm) was used for the SEM 
microscopy examination. The pH was adjusted using HCl and NaOH. Potassium amyl xanthate (KAX) solution 
prepared by dissolving the chemical grade KAX collector in purified water. The purification of xanthate includes 
dissolving commercial grade xanthate in acetone and its crystallization. Copper sulfate was used to introduce 
copper ions during the conditioning time. Galena was activated by copper at pH basic).  

 
Methods

Mineral suspensions of 3g galena 0.37 mm in size Z. Nedjar et al (1994). in 100 cm3 of the solution 
were conditioned at the desired pH for 5 min after each reagent addition in the presence of various activators. 
100 cm3 of copper sulfate (10-4 M) were used in potassium amyl xanthate (KAX 3.10-2 M). It was conditioned in 
distilled water for 10 min at pH 9.5 and then electrophoretic mobility was measured. Electrochemical study was 
conducted using carbon matrix composite (CMC) electrode. Conditioned in copper solution at pH 9.5, pH was 
regulated with NaOH (10-1 M) and HCl (10-1M). 

The scanning electron micrograph (SEM) type JSM-6390 is a high-performance device with a          
resolution of 3.0 nm. The customized GUI interface allows the instrument to be intuitively operated, and Smile 
Shot™ software ensures optimum operation settings. The JSM-6390 specimen chamber can accommodate a 
specimen of up to 152 mm in diameter. Standard automated features include auto focus/auto stigmator, autogun 
(saturation, bias and alignment), and automatic contrast and brightness. 

             FT-IR measurements were recorded on a SHIMADZU 8400S FTIR spectrometer in the region of      
400-4000 Cm-1 supplied with OMNIC software. The tablets were prepared by grinding 2mg of the solid sample 
with 50 mg of KBr. Before every analysis, the background was collected and subtracted from the spectrum of the 
sample. Two hundred scans at a resolution of 4 Cm-1 were recorded for each sample.   
 
Results and discussion 

Studies of activation of galena by copper 

 Rest Potential Measurement 
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Fig. 1. Rest potential measurement of galena in a 10-4 M CuSO4 solution at pH 9.5 

 

Figure 1 show the rest potential measurements of the galena in a 10-4 M CuSO4 solution at pH 9.5 as a 
function of the activating time. It can be seen that the rest potential of the galena increases sharply upon the    
addition the copper solution, indicating that a new phase (copper (II) sulfide) is formed on the surface of galena. 
The potential reaches a plateau value of +55 mV; see [Figure 1], after approximately 10 minutes. The new phase 
(activation product) is probably CuS.   

The initial positive potential can be attributed to the adsorption of Cu (OH) + on PbS surface. Some of 
Cu (OH) + is transferred into CuS via reaction: 

                                                            PbS + Cu (OH) +  CuS + Pb (OH) +                          (1) 

Xanthate adsorption on copper-activated galena 
The interaction between collectors and surfaces plays an important role in understanding of interaction        
mechanisms of different reagents with the mineral surface. It is now widely accepted that there are two separate 
mechanisms by which collectors adsorb on the sulfide minerals. Firstly, there is the chemisorption mechanism 
were the adsorbed xanthate molecule forms chemical bond with metal atoms (Pb) at the sulfide (PbS) surface. 
The other mechanism is electrochemical and involves electrochemical oxidation of the adsorbed collector     
molecules to give oxidation product species, which renders the galena surface hydrophobic J.D. Miller et al 
(1999). Results of galena surface oxidation to form hydrophobic and hydrophilic species depends strongly on 
potential. The rest potential measurement of galena activated with CuSO410-4M in 3.10-2M KAX at pH 9.5 are 
shown in Fig.2.  
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Fig. 2. Rest potential measurement of the galena activated with CuSO4 10-4M in 3 10-2 M KAX solution at pH 

9.5 
 

The rest potential measurement changes from: -111 mV to -61mV see [Figure 2]. 

As is known the solubility of Pb-AX (Ks = 1.20 10-11) is considerably higher than that of Pb(OH)2      
(Ks = 1.35 10-19) and therefore xanthate (KAX) is not adsorbed on sphalerite S.L. Chryssoulis et al (1994).  
Therefore, copper activation is essential for flotation of galena. As is shown in Fig 2 galena can easily be       
activated with copper ions at pH 9.5. Addition of 3 10-2 M KAX resulted in formation of strongly hydrophobic 
CuAX, and very high adsorption R. Woods  et al (1976).   

The mechanism is: 
(step1: 0 -2min)                               X-  Xads+ e-        (2) 
(step2: 2 -7min)                              PbS + 2X-  PbX2+ So + 2e-                   (3) 
                                                        O2 + 4H+ + 4e-  2H2O                                  (4) 
(step3: 7 -10min)                            2X- X2 + 2e-        (5) 
The expectation is that any of these species (Xads, PbX2, So, X2) constitutes entities contributing to the hydropho-
bicity of the surface. 
 
Studies of xanthate (KAX) adsorption on copper activated galena using FTIR technique and SEM: 
Characterization of pure galena and xanthate (KAX) using FTIR technique and SEM 
 
Several surface sensitive techniques, capable of analyzing the first few atomic layers of the mineral surface, have 
been used for more than ten years in a variety of studies related to the mechanisms of oxidation and adsorption in 
sulfide mineral flotation. The significance of these techniques is that they provide not only a compositional   
analysis of the surface but also information on chemical states (oxidation, bonding) and spatial distribution of 
adsorbed species on individual particles and complex mixtures of minerals as a function of depth through the 
surface layers Amira et al (1992). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 

Characterization of galena by SEM: 
 

 

 

 

 

 

 

  

 

 

 

Fig.3. Field emission scanning electron micrograph of ground galena surface. 

The characteristics and operating condition of the SEM technique have been fully described in other publica-
tions. It is well established that all metal sulfide minerals exhibit oxide and hydroxide species on their surface 
after exposure to air or aqueous solution. They have been observed in studies of galena. The surface oxidation of 
galena has been less systematically studied than those of other sulfide minerals but the pattern of reaction      
appears to be similar. It has been suggested that galena oxidizes considerably more slowly than the other sulfide 
minerals under these conditions. Further studies of PbS oxidation using SEM are still required. The physical   
nature of the oxidized layer formed initially on these surfaces can be seen in see [Figure 3], where a galena sam-
ple, ground initially in distilled water and allowed to condition for 10 minutes, was reground at that time and        
examined immediately using high resolution  field emission SEM without coating at 15 KV. 

Characterization of galena by RX 
      This method is used to identify the nature and structure of the crystallized products. 
 See [Figure 4]. There is the diameter d1=3.31 and d2=4.23; the angle (°2 )1=26.94                                                                             
and (°2 ) 2=20.94.   

 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig.4. RX spectra of galena 
 
 
 
 
 
 
 
 



 

 
Characterization of galena by FTIR 

FTIR spectroscopic studies were carried out on galena samples both before and after adsorption. 
The assignments of the various bands and peaks made in this study are in reasonable agreement with those 
reported in the literature for similar functional groups. 
The FTIR spectra see [Figure 5]. A show the characteristic bands of galena in 669.058-842.885Cm-1 and 
1616.06-1637.27 Cm-1corresponding to the carbonate CO3

2- ion group are found to be active.  
The strong bands related to the presence of bound water (-OH) stretching is around 3552.24Cm-1.  

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Fig.5. IR spectra of galena 
 
 

Characterization of potassium amyl xanthate (KAX) by FTIR: 
The FTIR spectra of potassium amyl xanthate (KAX), see [Figure 6], the absorption band at 1080 Cm-1is re-
lated to (C=S) bands and two bands at 1457 and 1638 Cm-1 is assigned to the bending vibration of (O-CS), 
the band at 2950 Cm-1 which are characteristic of the hydrocarbon chain, the band at 3450 Cm-1 is character-
istic of (O-H) stretching S.L. Chryssoulis et al (1994).  
 
 

 
 
 
 
 
 
 
 
            
 
 
 
 
 
 
 
 
 
 

Fig.6. IR spectra of KAX 
 
 
 



 

 
Characterization of potassium amyl xanthate (KAX) by SEM: 

 
 
 
  
 
 
 
 
 
 
 

 

 

 

 

Fig.7. Field emission scanning electron micrograph of ground xanthate KAX surface 

 
The characteristics and operating condition of the SEM technique have been fully described in other publica-
tions. It is well established that all xanthate KAX exhibit oxide and hydroxide species on their surface after ex-
posure to air or aqueous solution. They have been observed in studies of xanthate (KAX) see [Figure7]. 

Improving of xanthate adsorption on galena  
On copper-activated galena surfaces C.A Prestidje et al (1994), at low copper (II) additions and high af-

finity adsorption behavior, copper (I) amyl xanthate is the predominant surface species. The rate and extent of 
amyl xanthate adsorption are, however, decreased by extended conditioning periods apparently due to penetra-
tion of copper ions into the plomb sulfide lattice confirmed by SEM. Time dependence of 3 10-2 M KAX adsorp-
tion is then related to the subsequent back diffusion to the galena aqueous solution interface. At high copper sul-
fate (10-4 M) addition at pH 9.5, both dixanthogen and copper (I) amyl xanthate are detected on the galena sur-
face. 

  

 
Fig.8. Field emission scanning electron micrograph of ground galena surface activated by copper sulfate 10-4 M 

treated with KAX 3 10-2M at pH 9.5 conditioned in water for 10 min 
  
 
 



 

Table 2. Chemical analysis of galena activated by copper sulfate 10-4 M treated with KAX 3 10-2M at pH 9.5 
conditioned in water for 10 min. (At: Atomic Percent, Wt: Weight Percent) 
 
 

 
 
 
 

Figure 8 display SEM of typical galena particle surface after pH 9.5 oxidation for 10 min in the pres-
ence of 3 10-2M KAX. There appears to be evidence of the colloidal precipitates observed before copper sulfate 
and copper nitrate is present. The surface compositional information , see [Table 2]. (wt. Cu: 00.21 %). 

 
 

 
 

Fig.9. IR spectra of galena activated by copper sulfate 10-4 M treated with KAX 3 10-2M at pH 9.5 conditioned 
in water for 10 min. 

 
 

The infrared bands observed see [Figure 9], at 1109Cm-1 are characteristic of (Pb-AX) and 1276Cm-1 are charac-
teristic of dixanthogene (X2 forms oxidized with the molecule of amyl xanthate) Z. Nedjar et al (2011). 
 
 
Conclusions

1. The potassium amyl xanthate (KAX) has good collector ability on a sulphide mineral galena. 

2. Activation of galena at lower potentials increases the copper uptake by the mineral. 

3. Oxidation of galena at potential of +55 mV forms CuS product on galena in water for 10 min.    

4. Using the SEM technique action of 3 10-2M potassium amyl xanthate has been identified (adsorption to 
specific surface sites and colloidal precipitation from solution) 

5. The FTIR spectra revealed the presence of copper on the surface of galena and this is confirmed the ad-
sorption of KAX onto surface (Pb-AX,1109-1384Cm-1,X2,1276Cm-1). 

 

It is suggested that copper cations exchange with those of plomb during copper activation of galena. 

This study is ongoing and the results obtained will be discussed in a future work.  

 

 

Elements C O Cu S Pb 
Wt. % 00.00 04.37 00.21 19.51 75.91 
At % 00.00 21.82 00.27 48.63 29.28 
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