A COMPARATIVE STUDY OF VARIOUS POROUS ADSORBENTS FOR CO₂ ADSORPTION

Fatma ÖĞUZ ERDOĞAN
Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli- TURKEY
foerdogan@gmail.com

Abstract: Zeolites, metal organic frameworks (MOFs), carbon nanotubes, polymers, and activated carbons have been commonly used as porous adsorbents for CO₂ adsorption. The objective of the study was to prepare low-cost activated carbon from carob stones and compare its adsorption capacities for CO₂ with that of commercial mesoporous silica and four zeolites (zeolite, 4A zeolite, ammonium Y and sodium Y zeolites). CO₂ adsorption on these porous adsorbents was investigated by using volumetric adsorption apparatus, TriStar II 3020 at room temperature and at pressures up to 900 mmHg. The CO₂ adsorption capacities (wt%) were determined using the values of the quantity adsorbed at 900 mmHg. It could be confirmed that chemical activation plays an important role in determining the porous structure and amount of CO₂ adsorbed.

Keywords: Carob stones, zeolite, 4A zeolite, ammonium Y zeolite, sodium Y zeolite, mesoporous silica, activated carbon.

Introduction
Climate change is the result of increasing CO₂ and other greenhouse gases (such as CH₄, HFCs and F₆) emissions. Various techniques (cryogenic separation, absorption and adsorption) for removing CO₂ from gas and thus reducing its impact on climate change have been investigated. Adsorption is most commonly used method for the capture and separation of CO₂ because of low energy requirements and high adsorption capacity (Liu et al. 2011; Liu et al. 2015; Goel et al. 2016). Activated carbon, carbon nanotubes, zeolites, mesoporous silica, metal organic frameworks (MOFs), polymers have been commonly used as adsorbents for CO₂ adsorption. Activated carbon is produced from variety of raw materials such as cherry stones, apricot stones, cornelian cherry stones, olive stones, wood and coal. Activated carbons can be produced by chemical activation. Chemical activation is a single step method for the preparation of raw material in the presence of chemical agent such as KOH, NaOH, LiOH, ZnCl₂ and H₃PO₄ (Erdogan 2016; Erdogan and Erdogan 2016). There are several study for CO₂ adsorption in the literature. Boyjoo et al. (2017) produced activated carbon from Coca Cola® for CO₂ adsorption. They found the adsorption capacity of the KOH activated carbon as 5.22 mmol/g. Ramli et al. (2014) investigated the effect of pressure and temperature on the adsorption of CO₂ on MCM-41. Sayari et al. (2011) exhibited a high CO₂ adsorption capacity 1.55 mmol/g at 55 °C. Zeolite like metal organic frameworks with sod and rho topologies have been investigated for CO₂ adsorption by Chen et al. (2011). They found the adsorption capacities of sod-zeolite like metal organic framework and rho-zeolite like metal organic framework as 53 and 51 mg/g, respectively. Osler et al. (2017) reported that impregnating chitosan onto multiwalled carbon nanotubes increased their CO₂ adsorption capacity by 650%. The main objects of this study are: (i) to study the feasibility of using the activated carbon produced from carob stones as a low-cost adsorbent for CO₂ adsorption, (ii) to compare its CO₂ adsorption capacity with that of six commercially available typical adsorbents with different porosity and texture, i.e. activated carbon, mesoporous silica and four types zeolites (zeolite, 4A zeolite, ammonium Y and sodium Y zeolites).

Materials and Methods
In this study, carob stones were obtained from Antalya in Turkey. The precursor, carob stones were first air dried, then crushed. Then, carob stones were contacted with dilute a 15 vol.% sulfuric acid solution for 12 hours and washed with hot distilled water. Zeolite (Z), 4A zeolite (4AZ), ammonium Y (AYZ) and sodium Y zeolites (SYZ) and mesoporous silica (MCM-41) were purchased from Sigma-Aldrich.

Preparation of the activated carbon: 20 g of dried carob stones (<2 mm) was mixed in a beaker with 200 mL of KOH solution which corresponded to an impregnation ratio of 4:1 (weight of impregnation reagent/weight of carob stones) for 10 hours at 65°C. The mixtures were immersed in the ultrasonic bath for 120 minutes at 65°C and then the impregnated sample was then dried over a night in a moisture oven at 120°C. Then, the impregnated sample was carbonized in a tube furnace (Protherm STF) under N₂ flow at a heating rate of 10°C/min up to 700°C for 1 hour. After the activation, the sample was allowed to cool down to the room temperature under N₂ flow before its removal from the furnace. The activated sample was washed several times with HCl and hot distilled water to remove residual chemicals until it did not give chloride reaction with AgNO₃. The activated sample was dried for 6 hours at 120°C. Activated sample was stored in a sealed flask and labelled. The pores of activated carbon were...
characterized by analysis of N₂ adsorption–desorption isotherms at 77 K using Micromeritics ASAP 2020 (Erdogan 2018c).

Characterization of porous adsorbents and CO₂ adsorption measurement: The surface physical properties of adsorbents were characterized with an automated gas sorption apparatus (Micromeritics TriStar II 3020 and ASAP 2020) using N₂ as adsorbate at -196 °C. Prior to measurements, the porous adsorbents were degassed for 4 hours under vacuum at 300 °C. The BET surface area was calculated using nitrogen adsorption data in the relative pressure (P/P₀) range of 0.04 to 0.2. The total pore volume was calculated from the amount of adsorbed nitrogen at P/P₀=0.99. The micropore volume of the porous adsorbents was calculated by using the t-method analysis (Erdogan 2017a; 2018a). CO₂ adsorption-desorption isotherms of the produced activated carbon and commercially porous adsorbent samples were measured using a Micromeritics TriStar II 3020 instrument, which is a static volumetric apparatus. The equilibrium experiments were conducted at 25 °C and at pressures up to 900 mmHg. The CO₂ adsorption capacities were determined using the values of the quantity adsorbed at 900 mmHg.

Results and Discussion

The N₂ adsorption-desorption isotherms of the activated carbon (AC) is shown in Fig. 1. It can be seen that, activated carbon possessed a combination of type I and type IV isotherms according to IUPAC classification. Appearance of hysteresis loop indicates the presence of mesopores. The isotherm reveals mesoporosity but also strong signs of microporosity.
Average pore widths and pore volumes were calculated from the nitrogen adsorption isotherm data by t-method analysis. Table 1 gives the values of the BET surface areas, Langmuir surface areas, total pore volumes, micropore volumes and average pore widths which were calculated by using the nitrogen adsorption-desorption data obtained at 77 K. The BET and Langmuir surface areas were found for the AC produced with KOH activation, as 1480.96 and 2288.31 m²/g, respectively. In our previous studies we have reported that the BET surface areas and pore volumes and average pore widths of MCM-41 (Oguz Erdogan and Erdogan 2018), AYZ and SYZ (Erdogan 2018a), Z, 4AZ (Erdogan 2018b). BET surface areas of MCM-41, AYZ, SYZ, Z and 4AZ adsorbents were found as 689.32, 736.92, 766.61, 6.874 and 18.09 m²/g, respectively. Average pore widths for MCM-41 and 4AZ were found as 4.32 and 19.391 nm, respectively and it was reported that these absorbents have mesoporous structure. Average pore widths for AYZ, SYZ and Z were found as 1.945, 1.918 and 1.255 nm, respectively and it was reported that these absorbents have microporous structure.

Table 1: Physical characteristics of the activated carbon sample (AC).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area (m²/g)</td>
<td>1480.96</td>
</tr>
<tr>
<td>Langmuir surface area (m²/g)</td>
<td>2288.31</td>
</tr>
<tr>
<td>Total pore volume (cm³/g)</td>
<td>0.845</td>
</tr>
<tr>
<td>Micropore volume (cm³/g)</td>
<td>0.140</td>
</tr>
<tr>
<td>Average Pore Width (nm)</td>
<td>2.283</td>
</tr>
</tbody>
</table>

CO₂ Adsorption: Figure 2 represents the carbon dioxide adsorption-desorption isotherms of these six porous adsorbents at 25 °C. The adsorption isotherms indicate that the CO₂ adsorption capacity at 900 mmHg for SYZ is higher than the other porous adsorbents. The chemically activated carbon sample (AC) showed better CO₂ adsorption capacity as compared to the commercial Z, AYZ, 4AZ and MCM-41.

Figure 2: The adsorption-desorption isotherms of CO₂ on the porous samples.

The CO₂ adsorption capacities of these porous adsorbents are shown in Figure 3 and Table 2. The CO₂ adsorption capacities of the SYZ, AC, Z and AYZ were found as 19.657, 14.951, 13.905 and 8.524 wt %, respectively.
The CO₂ adsorption capacities of the MCM-41 and 4A zeolite were found as 2.540 and 1.811 wt %, respectively. The highest CO₂ adsorption capacities of 19.657 and 14.951 wt % were achieved with SYZ and AC, respectively. It could be confirmed that KOH activation plays an important role in determining the porous structure and amount of CO₂ adsorbed. A similar phenomenon was reported in previous studies (De Andres 2013; Boyjoo et al. 2017).

Table 2: CO₂ adsorption capacities (wt%) of porous adsorbents.

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>CO₂ adsorption capacities (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>14.951</td>
</tr>
<tr>
<td>Z</td>
<td>13.905</td>
</tr>
<tr>
<td>AYZ</td>
<td>8.524</td>
</tr>
<tr>
<td>SYZ</td>
<td>19.657</td>
</tr>
<tr>
<td>MCM-41</td>
<td>2.540</td>
</tr>
<tr>
<td>4AZ</td>
<td>1.811</td>
</tr>
</tbody>
</table>

Conclusion

We have investigated the adsorption process for CO₂ on six typical adsorbent with different texture, surface area and porosity. The CO₂ adsorption capacities of the SYZ, AC, Z, AYZ, MCM-41 and 4AZ were found as 19.657, 14.951, 13.905, 8.524, 2.540 and 1.811 wt %, respectively. Microporous zeolites and AC showed higher CO₂ adsorption capacities than the mesoporous MCM-41 and 4A zeolite. The CO₂ adsorption capacity of commercial 4A zeolite was found to be 1.811 wt %, while CO₂ adsorption capacity of the KOH activated carbon (AC) was found to be 14.951 wt %. This correspond to 8.26 times increase in the CO₂ adsorption capacity. The adsorption capacity of activated carbon sample obtained from carob stones for carbon dioxide was higher than the investigated four commercial porous adsorbents. It can be said that chemical activation plays an important role in determining the porous structure and amount of CO₂ adsorbed. This study revealed that carob stones based activated carbon can be used as a highly efficient and economically viable adsorbent for carbon dioxide adsorption.
Acknowledgements

The author acknowledges the financial support provided by Kocaeli University Scientific Research Projects Unit. (Project No: 2011/062, 2016/019 HD and 2017/57 HD).

References


